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Abstract

Three-dimensional numerical simulations using front-tracking method are performed to study the hydrodynamic interaction between
two liquid capsules suspended in simple shear flow in presence of inertia. Capsules are modeled as liquid drops surrounded by neo-Hook-
ean elastic membranes. In the limit of zero inertia, it has been known from past research that the hydrodynamic interaction between two
deformable particles (drops/capsules) suspended in shear flow results in an irreversible shift in the trajectories of the particles as one
particle rolls over the other. In this article, we show that the presence of inertia can significantly alter the capsule trajectories. When iner-
tia is small but finite, the capsules do undergo an irreversible displacement, but the lateral separation between them first decreases before
they roll over each other, unlike in Re� 1. For moderate to high inertia, the capsules reverse their directions of motion before coming
close to each other. The reversal of motion occurs progressively earlier in time (that is, the capsules come less closer to each other) with
increasing inertia. The long-time behavior of the capsule–capsule interaction at finite inertia showed that the capsules engage in spiraling
motions. Based on our simulations, four different regimes of capsule–capsule interaction at finite inertia are identified: (i) a self-diffusive
type interaction, (ii) an outwardly spiraling motion, (iii) a fixed-orbit spiraling motion, and (iv) an inwardly spiraling motion in which the
capsules settle with zero relative velocity. The reversal of motion, and the spiraling trajectories at finite inertia have no analogy in the
limit of zero inertia. Such motions are explained by analyzing the flow field around a deformed capsule which shows reverse flow regions
and off-surface stagnation points, similar to those previously reported in case of rigid spheres and cylinders under torque-free condition.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Capsules are liquid drops surrounded by thin elastic
membranes. Many biological cells including red blood cells
are often modeled as capsules (Pozrikidis, 2003). Artificial
capsules are also abundant in industrial applications (Bor-
han and Gupta, 2003; Gutcho, 1979). When placed in a
shear flow, a capsule deforms and aligns itself with the
flow, as does a liquid drop (Chang and Olbricht, 1993;
Pozrikidis, 1995; Barthes-Biesel, 1980). However, there
are important differences between a liquid drop and a cap-
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sule. For example, in a linear shear flow, a capsule often
exhibits a tank-treading motion or a tumbling motion.
Deformation of the capsule is governed by the properties
of the membrane material, such as, shear, extensional
and bending moduli, rather than surface tension. In case
of liquid drops, hydrodynamic interaction between a pair
of them may result into coalescence, or breakup leading
to formation of smaller and satellite drops. In case of cap-
sules, the presence of the membrane prevents them from
coalescing.

Dynamics of single capsule has been a subject of inves-
tigation for several decades. Deformation of a capsule
suspended in a shear flow was measured by Chang and
Olbricht (1993). Recently, Risso et al. (2006) experimen-
tally investigated single-file motion of artificial capsules
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flowing through narrow tubes. Barthes-Biesel and co-work-
ers (Barthes-Biesel, 1980; Barthes-Biesel and Rallison,
1981; Barthes-Biesel and Sgaier, 1985) developed the the-
ory of small deformation of a capsule suspended in a shear
(or, a general linear) flow. Li et al. (1988) computed axi-
symmetric large deformation of capsules in a straining
flow, and Leyrat-Maurin and Barthes-Biesel (1994) studied
axisymmetric large deformation of a capsule during its pas-
sage through a hyperbolic constriction. Queguiner and
Barthes-Biesel (1997) studied the axisymmetric motion of
capsules through cylindrical tubes. Pozrikidis (1995) and
Ramanujan and Pozrikidis (1998) used boundary integral
simulation to consider large deformation of capsules in
shear flow. Pozrikidis (2001) and Kwak and Pozrikidis
(2001) have also studied the effect of membrane bending
resistance on the deformation of a capsule suspended in
shear flow and in axisymmetric straining flow. Effect of
membrane viscosity on the dynamic response of a capsule
was studied by Diaz et al. (2000, 2001). Capsule deforma-
tion under various constitutive laws for the membrane
material was studied by Barthes-Biesel et al. (2002) and
Lac et al. (2004). Effect of membrane pre-stress was studied
by Lac and Barthes-Biesel (2005).

While the theory of the dynamics of single capsule has
advanced significantly, that of the motion of an ensemble
of capsules is still lacking. Barthes-Biesel and Chim
(1981) studied the rheology of a dilute suspension of cap-
sules at small deformation. Breyiannis and Pozrikidis
(2000) considered suspension of two-dimensional capsules
in shear flow.

As a first step towards a comprehensive understanding
of capsule suspension, Lac et al. (2007) studied interaction
between a pair of capsules in shear flow. The capsules were
released with different velocities, and thus they eventually
roll over each other. The interaction results in an irrevers-
ible shift in trajectory of the capsules. Similar phenomenon
has been observed during interaction of liquid drops.
Three-dimensional simulation of Loewenberg and Hinch
(1997), two-dimensional simulation by Charles and
Pozrikidis (1998), and experimental study by Guido
and Simeone (1998) showed that the hydrodynamic
interaction between a pair of liquid drops suspended in a
shear flow with different velocities resulted in an irre-
versible shift in the drop trajectory. In case of a suspension
of many drops/capsules, such irreversible displacement
dueto binary interactions collectively leads to the so-
called shear-induced self-diffusion which plays an impor-
tant role in mixing and microstructural evolution of a
suspension.

Shear-induced self-diffusion has been mostly studied in
the case of suspension of rigid spherical particles. Batchelor
and Green (1972) studied the interaction between two rigid
spheres in a linear flow, and showed that the trajectories of
one sphere relative to the other could be closed (i.e. they do
not extend to infinity). The existence of closed trajectories
for a pair of spheres was experimentally observed by Dar-
abaner and Mason (1967). If the spheres are perfectly
smooth, interaction between a pair of them does not lead
to self-diffusion. Self-diffusion of rigid spheres is possible
when more than two spheres are present (Acrivos et al.,
1992; Wang et al., 1996), or surface roughness is introduced
(daCunha and Hinch, 1996). Experimental measurements
on shear-induced self-diffusion of rigid particles have been
obtained by Eckstein et al. (1977), Leighton and Acrivos
(1987), Chang and Powell (1994), and Breedveld et al.
(1998, 2001). Theoretical and numerical studies on shear-
induced diffusion of rigid particles have been considered
by Brady and Bossis (1985), Brady and Morris (1997), Foss
and Brady (1999), Marchioro and Acrivos (2001), Drazer
et al. (2002), and Sierou and Brady (2004).

The works mentioned above are all in the limit of Stokes
flow. The presence of inertia is expected to affect the
interaction between a pair of liquid drops/capsules/rigid
spheres, as well as the shear-induced diffusion mechanism.
Interaction between a pair of liquid drops in presence of
inertia has been extensively studied. These studies are com-
plicated by the fact that the drops often coalesce or break
upon interaction at high inertia. Depending on the nature
of the coalescence and breakup, various regimes of colli-
sion can be identified. Here we avoid the discussion on
drop–drop collision, and refer to some recent papers by,
for example, Pigeonneau and Feuillebois (2002), Qian
and Law (1997), Wang et al. (1994), Ashgriz and Poo
(1990), Nobari and Tryggvason (1996), Brenn and Kolo-
baric (2006), Pan and Suga (2005), and Roisman (2004),
among others, which give excellent accounts on the subject.
We note, however, that the shear-induced diffusion process
for non-coalescing and non-breaking liquid drops in pres-

ence of inertia has not been studied. So is the case for liquid
capsules. As for rigid particles, Kromkamp et al. (2005)
studied pairwise interaction between two circular particles
in a shear flow at finite but small inertia. Kromkamp
et al. (2005) observed that though the shear-induced
vdiffusion mechanism is present, the trajectories of the par-
ticles showed markedly different behavior in presence of
inertia.

It appears, therefore, that hydrodynamic interaction
between three-dimensional deformable particles in presence

of inertia lack sufficient investigation. In this paper we
address hydrodynamic interaction between two liquid cap-
sules suspended in a linear shear flow in presence of inertia.
We choose capsules because unlike liquid drops, they do
not coalesce or break upon interaction, and hence provide
a ‘cleaner’ system. At the same time, capsules are deform-
able like liquid drops. Thus, unlike a pair of smooth rigid
spheres which does not show irreversible trajectory shift,
a pair of capsules is expected to show this mechanism. As
mentioned above, the only study that addressed hydrody-
namic interaction of a capsule-pair is the one by Lac
et al. (2007) in the limit of zero inertia. Here we extend their
study to finite inertia. While inertia is not important for
biological applications, it is often relevant for artificial cap-
sules in industrial processes related to food and polymer
processing (Borhan and Gupta, 2003).
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In this paper we present three-dimensional numerical
simulation on capsule dynamics using immersed bound-
ary/front-tracking method. The main objective of the
paper is to study the interaction between two capsules in
presence of inertia. However, we note that there is virtually
no study that addressed the effect of inertia on single cap-
sule dynamics. Therefore, in the first part of the paper, we
briefly consider the dynamics of a single capsule suspended
in a shear flow in presence of inertia. This is followed by the
results on the effect of inertia on capsule–capsule
interaction.
2. Flow configuration and simulation technique

The flow configuration is described in Fig. 1. We con-
sider deformation of a capsule, and interaction between
two capsules, suspended in a simple (linear) shear flow
given by U = {Gy, 0,0}, where G is the shear rate. The ini-
tial undeformed shape of a capsule is spherical with diam-
eter a. The fluid, both inside and outside of the capsules, is
incompressible and Newtonian. The channel is periodic in
the streamwise (x) direction, and in the z-direction. In the
y-direction, the flow is bounded by two no-slip walls
separated by a distance H. The computational domain is
a cube of sides of length H. In the present computation,
we take a/H = 0.16.

The simulation technique considered here is the front-
tracking/immersed boundary method (Unverdi and Try-
ggvason, 1992) for multiple fluids with different properties.
The main idea of the front-tracking method is to use a sin-
gle set of equations for both the fluids, inside and outside
of the capsule. The interface (i.e. the capsule membrane)
is accounted for by introducing a body force F(x, t) in the
governing equations. It is zero everywhere in the flow
except at the interface:

Fðx; tÞ ¼
Z

oS
fðx0; tÞdðx� x0Þdx0; ð1Þ

where x is the location of an arbitrary point in the flow do-
main, x0 is any point on the interface, oS is the entire inter-
face, and d is the three-dimensional Delta function which
vanishes everywhere except at the interface. Here f is the
elastic force generated in the membrane due to deforma-
tion of the capsule. For incompressible fluids of different
viscosities, the governing equations are:
x
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z
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Fig. 1. Schematic of the initial configuration and location of the c
r � u¼ 0; and q
ou
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þ u � ru

� �
¼�rpþr � sþF: ð2Þ

Here u(x, t) is the fluid velocity, q is the density, p pressure,
and

s ¼ lðruþ ðruÞTÞ ð3Þ

is the viscous stress tensor. Here l(x, t) is the viscosity in
the entire fluid: within a capsule, l = lc, and for any point
outside, l = l0. As the capsules move and deform, l(x, t)
needs to be updated. Following Unverdi and Tryggvason,
1992, this is done by solving a Poisson equation for an indi-
cator function I(x) defined as

lðxÞ ¼ l0 þ ðlc � l0ÞIðxÞ: ð4Þ

The governing equations for the fluid flow are solved on a
fixed Eulerian grid, and the capsule membrane is tracked in
a Lagrangian manner by a set of marker points. Once the
fluid velocity is known, the velocity and the new position
of the interface is computed as

uðx0Þ ¼
Z

S
uðxÞdðx� x0Þdx; and

dx0

dt
¼ uðx0Þ; ð5Þ

where S indicates the entire flow domain.
The d function used in Eqs. (1) and (5) is constructed by

multiplying three 1D d functions as

dðx� x0Þ ¼ dðx� x0Þdðy � y0Þdðz� z0Þ: ð6Þ

For numerical implementation, a smooth representation of
the d-function is used as

Dðx� x0Þ ¼ 1

64D3

Y3

i¼1

1þ cos
p

2D
ðxi � x0iÞ

� �

for jxi � x0ij 6 2D; i ¼ 1; 2; 3;

Dðx� x0Þ ¼ 0 otherwise;

ð7Þ

where D is the Eulerian grid size (Unverdi and Tryggvason,
1992). In discrete form, the integrals in Eqs. (1) and (5) can
be written as

FðxjÞ ¼ RiDðxj � x0iÞfðx0iÞ; ð8Þ
uðx0iÞ ¼ RjDðxj � x0iÞuðxjÞ; ð9Þ

where i and j represent Lagrangian and Eulerian points,
respectively.
Periodic Domain

z
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y
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Flow

apsule in shear flow: (a) single capsule, (b) a pair of capsules.
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Computation of f(x0, t) requires a constitutive law for the
material of the membrane. Here we assume that the mem-
brane follows the neo-Hookean law. The strain energy
function for a neo-Hookean membrane is given by

W ¼ Eh
6
ð�2

1 þ �2
2 þ ��2

1 ��2
2 � 3Þ; ð10Þ

where �1 and �2 are the principal strains, E is the elastic
modulus, and h is the membrane thickness. The membrane
is discretized using triangular elements. Then f is obtained
at three nodes of each element by differentiating W with re-
spect to the nodal displacement v (Charrier et al., 1989) as
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Fig. 2. Deformation of single capsule at Re� 1 in shear flow. (a) Steady-state
is shown by —s—. (b) Angular orientation h w.r.t. x-axis. Line patterns for (
Ca = 0.2. (c) Deformation parameter D. Resolution test using 803 (—) and 12
Pozrikidis (1998). Symbols are the results from Ramanujan and Pozrikidis, lin
f ¼ oW
o�1

o�1

ov
þ oW

o�2

o�2

ov
: ð11Þ

The main idea is that a general 3D deformation of the
membrane can be reduced to a 2D problem by assuming
that individual triangular element on the membrane re-
mains flat even after deformation, and that the membrane
force remains invariant under a coordinate transformation.
This assumption still allows large deformation of the cap-
sule. The resultant force f at a membrane node is the vector
sum of the forces exerted by all elements surrounding that
node. The method has been used earlier in a separate code
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shapes of deformed capsules (shown in x–y plane); the initial capsule shape
a) and (b) are as follows: –�–�– Ca = 0.025; � � � Ca = 0.05, — Ca = 0.1, - - -
03 (� � �) Eulerian points is shown. Inset: comparison with Ramanujan and
es are from present simulation. Line patterns are for various Ca as in (b).



S.K. Doddi, P. Bagchi / International Journal of Multiphase Flow 34 (2008) 375–392 379
by Eggleton and Popel (1998) and validated against the
analytical results for small deformation of capsules.

The governing equations are made dimensionless using a

as the characteristic length scale, and the inverse shear rate
G�1 as the time scale. The dimensionless time t G�1 is
denoted by t*. The major dimensionless parameters are
the Capillary number Ca = lGa/Eh which is the ratio of
the viscous stress to the elastic force of the capsule mem-
brane, and the Reynolds number Re = qGa2/l. In the limit
of small inertia, capillary number is the relevant parameter,
whereas at finite inertia it is customary to use the Weber
number We = ReCa = qG2a3/Eh instead of the capillary
number. The viscosities of the capsule liquid and the exte-
rior liquid are the same.

The governing equations are discretized spatially using a
second-order finite difference scheme, and temporally using
a two-step time-split scheme. In this method the momen-
tum equation is split into an advection–diffusion equation
and a Poisson equation for the pressure. The nonlinear
term in the advection–diffusion equation is treated explic-
itly using a second–order Adams–Bashforth scheme, and
-0.5 0 0.5

-0.5

0

0.5

0 2 4
0.05

0.1

0.15

0.2

0.25

Fig. 3. Deformation of single capsule at finite Re. (a) Steady shapes, (b) defor
Re= 10; — Re = 25; � � � Re = 50 (We = 2, 5, 10, respectively). In (a), the initi
the viscous terms are treated implicitly using the Crank–
Nicholson scheme. The advection–diffusion equation is
solved using an ADI (alternating direction implicit)
scheme. The velocity is not divergence-free at the end of
the advection–diffusion step. The Poisson equation is then
solved to obtain pressure at the next time level. Using the
new pressure, the velocity is corrected to make it diver-
gence-free. In order to reduce computation, the Poisson
equation is Fourier transformed in the x-direction yielding
a set of 2D decoupled PDEs which is directly inverted to
obtain pressure. Typical resolutions used in this study
are: 120 � 120 � 120 Eulerian points, 1280 triangular ele-
ments on capsule surface (Lagrangian mesh), and dimen-
sionless timestep �10�3.

3. Results and discussion

3.1. Validation: capsule deformation at Re� 1

We first validate the front-tracking methodology by
considering large deformation of a spherical capsule at
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mation parameter D, and (c) angular orientation h. Line patterns are: - - -
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low Reynolds numbers (Re� 1) suspended in simple shear
flow. When placed in a shear flow, a capsule deforms and
aligns itself with the flow (Chang and Olbricht, 1993;
Pozrikidis, 1995; Barthes-Biesel, 1980). Previous investiga-
tors have studied large deformation of capsules in the limit
of Re� 1 using boundary integral method (Pozrikidis,
1995; Ramanujan and Pozrikidis, 1998), and immersed
boundary technique similar to the one presented above
(Eggleton and Popel, 1998). Fig. 2a presents the deformed
shapes of a capsule after it has reached a steady state.
Deformation of the capsule into an ellipsoidal shape, and
alignment with the flow direction are evident here. We also
show variation in capsule shape with varying capillary
numbers. Deformation and alignment increase with
increasing capillary number. These results are qualitatively
similar to those obtained by Pozrikidis (1995), Ramanujan
and Pozrikidis (1998), and Eggleton and Popel (1998). We
also present the time-history of capsule orientation by
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Fig. 4. Flow field around single capsule at (a
showing the angle that the major axis of the ellipsoid makes
with the x direction (Fig. 2b). After an initial transience,
the capsule aligns at a steady angle with the flow, and the
asymptotic angle decreases with increasing Ca.

Quantitative comparison between the present and previ-
ous results is shown in Fig. 2c (inset). Here we show the
Taylor deformation parameter D defined as D = (L � B)/
(L + B) where L and B are the major and minor axis of
the ellipsoid in the plane of the shear. Fig. 2c (inset) shows
the time-history of the Taylor deformation for various Ca

at Re� 1. The results obtained from the present method
are compared with those of the boundary integral simula-
tions of Ramanujan and Pozrikidis (1998). Excellent agree-
ment between the two can be seen. The steady-state value
of D increases with increasing Ca. Sensitivity of our results
to the Eulerian resolution is also shown in Fig. 2c by con-
sidering two simulations at 803 and 1203 resolutions. No
significant difference is observed. Computations using
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0 1 2 3

0 1 2 3

) Re� 1, (b) Re = 10, and (c) Re = 50.
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Fig. 5. Sequence of capsule–capsule interaction at Re� 1. Capsule shapes
for Ca = 0.2 are shown.
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1280 and 5120 triangular elements on the capsule surface
also showed no significant difference (data not shown).

3.2. Capsule deformation at finite Re

As mentioned before, previous works on capsule defor-
mation have been mostly limited to Re� 1. Using the
immersed boundary code, we have simulated capsule defor-
mation in shear flow at finite Re up to 50, and We up to 10.
The capsule shapes in this range of Re are shown in Fig. 3a.
As in the limit of small inertia, capsules at finite inertia also
attain a steady ellipsoidal shape and inclined orientation
with the flow. We note that the capsule elongates more as
Re (or, We) increases. The deformation parameter D and
the orientation angle h are shown in Fig. 3b and c, respec-
tively, with respect to time. The asymptotic steady values of
D and h increase with increasing Re (or, We).

Once the capsule attains the steady deformed shape and
orientation, the interior liquid and the membrane rotate in
a tank-treading manner. The streamlines in and around the
capsule at steady state are shown in Fig. 4 for Re� 1 and
for and Re = 10 and 50. For all cases, streamlines within
the capsule rotate clockwise in accordance with the direc-
tion of vorticity of the imposed flow. The streamlines out-
side the capsule, however, show significant differences at
small and high inertia. For Re� 1 (Fig. 4a) all streamlines
around the capsule extend to infinity. Streamlines in
y/a > 0 half of the domain go from left to right, and those
in y/a < 0 go from right to left, in agreement with the
imposed shear flow. When Re increases to 10 or 50
(Fig. 4b and c), not all streamlines extend to infinity.
Rather, the streamlines within �0.5 < y/a < 0.5 form a
reverse flow. The streamlines coming from left in 0 <
y/a < 0.5 turn around as they approach the capsule, and
then they move to the left in �0.5 < y/a < 0. The stream-
lines coming from right in �0.5 < y/a < 0, also turn around
as they approach the capsule, and move to the right in
0 < y/a < 0.5. Between the reverse-flow region, and the cap-
sule, a straining flow region with a off-surface stagnation
point is generated. As Re increases from 10 to 50, the
reverse-flow region expands more in the lateral (y) direc-
tion. Note that the flow domain is periodic in x. Thus we
actually simulate an array of capsules with centers located
H apart. The reverse streamlines in between two adjacent
capsules then form a recirculating flow.

The streamline patters shown here can be compared
with those obtained previously for rigid particles sus-
pended in simple shear flow. In the limit of Stokes flow,
all streamlines around a rigid spherical or circular particle
extends from �1 to +1, or vice versa, under a torque-free
condition (e.g. Happel and Brenner, 1983; Poe and Acri-
vos, 1975; Mikulencak and Morris, 2004). At finite inertia,
experiments (Poe and Acrivos, 1975) and numerical simu-
lations (Kossack and Acrivos, 1974; Mikulencak and Mor-
ris, 2004) have shown the existence of reverse streamlines,
and off-surface stagnation points for a torque-free rigid
sphere or circular cylinder. The distance between the stag-
nation points and the center of the particle decreases as Re

increases (Poe and Acrivos, 1975). Our results show that
the reverse streamlines and off-surface stagnation points
also exist for deformable liquid capsules at finite Re.
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3.3. Capsule–capsule interaction at Re� 1

Next we consider the main results of the paper, that is,
hydrodynamic interaction between two capsules suspended
in a shear flow. We first consider the low Re limit, followed
by the effect of inertia in the next section. The initial coor-
dinates of the capsule centers are �x0, y0, z0, and x0, �y0,
z0. Thus, the capsules are initially placed off-axis, at small
but equal distances above and below the center line at
y = 0 (Figs. 1b and 5a). The initial lateral and horizontal
separations between the centers of the capsules are denoted
by Dy0, and Dx0. The dimensionless parameter Dy0/a is also
called the impact parameter. Due to the non-zero relative
velocity between them, the capsules approach each other,
and subsequently interact. The sequence of interaction
at successive times is shown in Fig. 5 for Re� 1. Here
we consider Ca = 0.2, and Dy0/a = 0.2, and Dx0/a = 4.
As the flow starts, the capsules first deform and attain
ellipsoidal shapes. As they approach closer, the capsules
roll over each other. During the process, both capsules
undergo significant deformation, and a flat contact
area is formed. Eventually the capsules separate in the
x-direction, and the ellipsoidal shapes are recovered. The
capsule moving to the right continues to move in that direc-
tion, and the one moving to left also continues in that
direction.

A close inspection of Fig. 5 reveals that during the inter-
action, the lateral separation between the capsule first
increases and then decreases. The history of the lateral sep-
aration Dy between the capsule centroids is shown in Fig. 6.
The effect of Ca is also shown here. Dy remains at its initial
value of 0.2 until the capsules are close enough. Upon close
encounter, Dy increases sharply reaching its maximum
when the capsules roll over each other (i.e. Dx � 0). After
the interaction, Dy decreases. As the capsules move away
from each other, Dy reaches a steady value. The final
steady value of Dy (�0.6) is higher than the initial value
of 0.2, implying that the hydrodynamic interaction has
resulted in a larger permanent lateral separation between
the capsules. The process is irreversible, and in case of a
suspension of many particles, such increased displacement
during binary collisions collectively leads to the shear-
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Fig. 6. Lateral separation Dy versus Dx for Re� 1. Shown here are - - - Ca =
Dy0 = 0.2.
induced diffusion in the system. The binary interaction seen
here for the liquid capsules is similar to that recently pub-
lished by Lac et al. (2007). It is also similar to the binary
interaction of non-coalescing liquid drops at zero Reynolds
numbers (e.g. Loewenberg and Hinch, 1997) and at finite
Reynolds numbers (e.g. Nobari and Tryggvason, 1996),
and for rigid particles (e.g. Kromkamp et al., 2005) at finite
Re.

3.4. Capsule–capsule interaction at finite Re: short-time

behavior

Next we consider the effect of inertia on capsule–capsule
interaction. The initial off-sets are Dy0/a = 0.2 and Dx0/
a = 4, same as before. Successive profiles of the capsules
are shown in Fig. 7 for Re = 10 and We = 2. As the flow
starts, the capsules deform and attain ellipsoidal shapes.
As time progresses, the capsules first approach each other
due to the non-zero relative velocity between them
(Fig. 7b). As the capsules come closer, however, they do
not roll over each other. Rather, they reverse the direction
of motion (at t* = 12 in Fig. 7c). The capsule initially mov-
ing to the right (shown using light shading) now moves to
left, while the one moving to left (shown using dark shad-
ing) now moves to right (Fig. 7d). This behavior is remark-
ably different from that seen earlier at Re� 1 in Fig. 5,
where the capsules rolled over each other, and maintained
their respective directions of motion after the interaction.
At around t* = 28 (Fig. 7e), the horizontal separation
between the capsules is the maximum. At this point, their
directions of motion reverse again, and they again start
approaching each other, as evident from Fig. 7f for
t* = 38. Subsequently, at around t* = 45, the capsules
again reverse their motion, and recede from each other
(not shown). The simulation was continued for a long time,
and the reversal of the motion was observed to repeat
continuously.

A number of numerical experiments at finite Re up to 50
are performed. The trajectories of the capsule centroids for
different Re are shown in Fig. 8a. We also show the y-coor-
dinates of the capsule centroids versus time in Fig. 8b and c
which may also be helpful to describe the capsule interac-
2 4

0.05, — Ca = 0.2, � � � Ca = 0.4. t* increases from left to right. At t* = 0,
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tion at finite Re. For all Re, the initial horizontal separa-
tion is 4, and the vertical separation is Dy0 = 0.2. The initial
locations of the capsule centroids are marked by circles in
Fig. 8a. The capsule located in x < 0, y > 0 initially moves
to the right, and the one located in x > 0, y < 0 moves to
the left. Consider first the cases with Re� 1. The capsules
approach each other in nearly horizontal trajectories. As
the horizontal separation between them decreases, the cap-
sules roll over each other which results in an increase in the
vertical separation between their centers. After the interac-
tion, the capsules move away from each other, and the ver-
tical separation decreases. The capsule initially moving to
the right (or left) continues to move in the same direction
after the interaction. Next consider Re = 0.5. Inertia does
not play any significant role at this Re. The trajectories
of the capsules at this Re are similar to those obtained
for Re� 1.

Consider next Re = 1.5 and 2.3 (We = 0.075 and 0.115)
in Fig. 8a and b. The effect of inertia is now apparent, as
the capsules do not move in horizontal trajectories before
the encounter. Rather, they move towards the y = 0 axis
immediately before the encounter. As a result, the vertical
separation between the capsule first decreases. Also note
that the capsules move closer to the y = 0 axis as Re

increases. Upon encounter, the capsules roll over each
other. Subsequently, the capsules move away from each
other, and continue to maintain their initial direction of
motion. Thus the irreversible increase in lateral displace-
ment occurs even at Re = 1.5 and 2.3 except that the cap-
sules move laterally towards y = 0 axis before the
encounter.

When Re increases to 3 (Fig. 8a and c), several remark-
able effects of inertia are observed. The capsules first
approach each other as before. They also migrate verti-
cally, and move closer towards the y = 0 axis. But upon
encounter, they do not roll over each other. Rather they
reverse their direction of motion upon interaction. The
reversal of direction is due to the fact that the capsules
cross the y = 0 axis. The capsule which is in y > 0 before
the encounter, moves to y < 0 after the encounter, and vice
versa. Subsequently, the capsules reverse their direction of
motion. The capsule moving to the right (left) before the
interaction, moves to the left (right) after the interaction.

When Re increases to 10 and 50, the reversal of motion of
the capsules is also observed (Fig. 8a and c). We also note
that as Re increases from 3 to 50, the reversal of motion
of a capsule happens progressively earlier in time (Fig. 8c).

The interaction between the capsules at finite Re as just
described has no similarity in low Re. The irreversible
increase in lateral displacement (which leads to the self-dif-
fusion process in case of many particles) observed at low
Re is completely absent in presence of moderate to high
inertia (Re > 3). Recently, Kromkamp et al. (2005) per-
formed numerical simulations of hydrodynamic interaction
between two rigid circular cylinders suspended in a simple
shear flow in presence of inertia. The Reynolds number of
the particles considered in their study ranges from 0.019 to
0.518. At Re > 0.058, they observed that the cylinders move
vertically towards the y = 0 axis before rolling over each
other. This result is similar to that obtained by us for
three-dimensional and deformable capsules at Re = 1.5
and 2.3. These two results therefore suggest that inertia
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alters the trajectories of the particles during binary interac-
tion irrespective of whether the bodies are 2D or 3D, and
rigid, or deformable. Kromkamp et al. (2005) however,
did not consider much higher Reynolds number (e.g.
Re > 1) as considered in our study. Thus, the reversal of
capsule motion for Re P 3 as described above has not been
reported by them.

The effect of the impact parameter Dy0/a is studied next
in Fig. 9a. We consider Re = 50 only, but Dy0/a = 0.2, 0.40
and 0.57. Due to the inertia, in all cases, the capsules first
approach y = 0 axis before encounter. For Dy0/a = 0.2
and 0.4, the capsules cross the y = 0 axis, and thus reverse
their directions of motion. For Dy0/a = 0.57, the capsules
do not cross the y = 0 axis, and they roll over each other,
resulting in increased lateral displacement implying shear-
diffusion. This result implies that the roll-over or reversal
of motion depends on the initial vertical separation (impact
parameter), not just on Re (or We). We also note that the
-2 -1 0

-0.4

-0.2

0

0.2

0.4

Direction of Flow

y c
/a

xc

0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

0.4

Re
increasing

y c
/a

t∗

(b)

(a)
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capsule center.
reversal of motion occurs earlier as the impact parameter
decreases. In the limit Dy0 ? 0, there is no interaction
between the capsules, and Dx = Dx0 for all time. In the
limit Dy0 ?1, also there is no interaction between the
capsules, and Dy = Dy0 for all time.

Fig. 9b and c show the effect of Dx0. Here Dy0/a is held
constant at 0.2, and Dx0/a is 1.5 and 8. The Reynolds num-
ber considered here is 3, 10, and 50 (We = 0.15, 0.5, and
2.5, respectively). For all Re at Dx0/a = 8 (Fig. 9b), the cap-
sule trajectories are similar to those obtained for Dx0/a = 4
(Fig. 8), and they show the reversal of the capsule motion.
Thus, the reversal of the motion is expected to occur even
at large Dx0/a. On the contrary, capsules with Dx0/a = 1.5
(Fig. 9c) show remarkably different trend. In this case,
reversal of motion occurs only for Re = 50, and the diffu-
sion-type motion (roll-over) occurs for Re = 3 and 10.

We now explain the physical reason for the reversal of
capsule motion at finite Re. For that, we refer to the
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tes of capsule centroids (yc) versus t*. For (a)–(c), line patterns are: ———
– Re = 10; thick line Re = 50. Symbol ‘o’ in (a) is the initial location of
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streamlines plot presented in Fig. 4. It was noted in Fig. 4
that at Re� 1, the streamlines outside a capsule smoothly
follow the deformed shape of the capsule, and extend to
1. If a second capsule is introduced in the flow, it will fol-
low the streamlines, and move around and over the first
capsule as seen in Fig. 5 resulting in self-diffusion type
motion. At finite Re, on the other hand, the exterior
streamlines near the y = 0 axis create a recirculating flow.
If a second capsule is released within the recirculating flow,
it will follow the closed streamlines, and show the reversal
of motion. If it is released outside the recirculating flow, it
will follow the open streamlines, and roll over the first cap-
sule. The lateral extent of the recirculating flow increases
with increasing Re (Fig. 4). At moderate values of Re
(e.g. 1.5 and 2.3 in Fig. 8) and Dy0 (e.g. 0.2), the initial
locations of the capsules are nearly along the boundary
of the recirculating flow. Thus the capsule initially move
closer to the y = 0 axis before rolling over each other.
For higher values of Re (>3) but moderate values of Dy0
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Fig. 9. Capsule trajectories at finite Re. (a) Effect of Dy0 for Re = 50. � � � � � �
Dx0 = 8, and (c) Dx0 = 1.5. For (b) and (c) line patterns are: � � � � � � Re = 3; - - -
capsule centroids.
(e.g. 0.2 in Fig. 8), the initial locations of the capsules
are well within the recirculating flow regions, and hence
the capsules reverse their motion. For Re = 50 and
Dy0 = 0.57 (Fig. 9a), the initial locations are outside the
reverse flow regions, and hence the capsules roll over each
other.

Some more interesting observations at finite Re can be
made in Fig. 8b and c, which show the y-coordinate of
the capsule centroids versus dimensionless time. First, for
Re < 3, the time t* taken by the capsules before they tumble
increases with increasing Re. This is because as Re

increases, the recirculating flow strengthens, and the verti-
cal component of fluid velocity increases in the recirculat-
ing region. The capsules move towards the y = 0 axis
relatively earlier. As a result, the relative velocity between
them (based on the undisturbed shear flow) decreases
resulting in longer time before they tumble over each other.
For Re P 3, even higher lateral fluid velocity causes the
capsules to move quicker towards the y = 0 axis, and cross
1 2
/a

0 1 2 3 4
xc /a

0.5 1

Dy0/a = 0.57; - - - Dy0/a = 0.4; — Dy0/a = 0.2. (b)–(c) Effect of Dx0. (b)
Re = 10; — Re = 50. Diamond symbols indicate the initial location of the
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the axis due to inertia. Thus for Re P 3, the reversal of
capsule motion occurs earlier in time with increasing Re.
It also implies, as evident from Figs. 8 and 9, that with
increasing Re (P3) the capsules come less closer to each
other.

The reversal of the capsule motion should not be con-
fused with the bouncing collision that is often encountered
during head-on collision of liquid drops (see, e.g. Nobari
and Tryggvason, 1996; Mohamed-Kassim and Longmire,
2004). In the latter case, the drops come close to each other
before bouncing. In the present case, the capsules at finite
inertia do not come close to each other as evident from
Figs. 7. To illustrate this point, we compute the minimum
horizontal distance Dxmin between the capsules as shown in
Fig. 10. We note that Dxmin depends on Re, Dx0 and Dy0.
For a given Dy0, we see that Dxmin increases with increasing
Re (also see Fig. 9a), due to the increasing strength of the
recirculating flow. For a given Re, Dxmin increases with
decreasing Dy0. In the limits Dy0 ? 0 or 1, no interaction
can take place, and Dx = Dx0.

One implication of the fact that the capsules do not
come close to each other at finite Re is that the deformed
ellipsoidal shapes of the capsules remain unchanged during
the interaction. This is in contrast to the observation at low
0 1 2

40 60

Re = 10, - - - Re = 25, — Re = 50. Diamond symbols indicate the initial



-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1 2
4

3 R1

x/

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1 2 4
3

a

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1 2 4

3
R2 R2S

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

R2 R2
1

2 4
3

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

R1 2 4
13

y
/a

y
/

y
/a

y
/a

y
/a

a

x/a

x/a

x/a

x/a

(a)

(b)

(c)

(d)

(e)

Fig. 12. Time sequence of fluid velocity vectors for capsule–capsule interaction at Re = 10. (a)–(e) are at t* = 5, 9, 12, 20, and 28.

S.K. Doddi, P. Bagchi / International Journal of Multiphase Flow 34 (2008) 375–392 387



388 S.K. Doddi, P. Bagchi / International Journal of Multiphase Flow 34 (2008) 375–392
Re, where capsule shapes deform significantly during the
interaction (Fig. 5).

3.5. Capsule–capsule interaction at finite Re: long-time

behavior

So far we discussed the results on the first encounter
between the capsules. Simulations presented above were
continued for longer time. We now discuss the long-time
behavior of the capsules. For this we only consider the
cases for which reversal of capsule motion was observed.
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The long-time behavior can be illustrated by going back
to Fig. 7. Here we see that the capsules, after deforming,
first approach each other, then recede from each other (at
t* � 12–28), and then again approach each other (at
t* � 28–38). They also periodically move above and below
the y = 0 axis. The periodic approach and receding motion
continued throughout the length of the simulation
(t* � 100). Simulations at higher Re and We also show sim-
ilar periodic motion, details of which are described later.
Such periodic approach and receding motion over long
time at high Re has no similarity at low Re.
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= 50. (a)–(d) are at t* = 18, 23, 28, and 33.
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Long-time trajectories of the capsules for Re = 10, 25
and 50 (We = 2, 5 and 10, respectively) are shown in
Fig. 11. The trajectories show that the capsules move in spi-
rals, and thus repeatedly approach and recede. The direc-
tion of the spiraling motion coincides with the direction
of the vorticity of the imposed shear flow. The trajectories
do not show the same behavior for all Re and We. At
Re = 10, the capsules move spirally outward. At Re = 25,
the capsules first spiral inward, but eventually continue to
spiral in fixed orbits. At Re = 50, the capsules spiral
inward, and then settle on the y = 0 axis after which no sig-
nificant motion of them is observed. The spiraling motion
of the capsules is further illustrated in Fig. 11b showing
the capsule centroids (yc) versus t*. For both capsules yc

oscillates about y = 0. For Re = 10, amplitude of oscilla-
tions increases with time as is the case for an outward
spiral. For Re = 25, the amplitude remains constant as is
the case for a fixed-orbit motion. For Re = 50, oscillations
are damped as the capsules spiral inward and eventually
settle at y = 0 axis.

The explanation for the different spiraling motions (out-
ward, inward or fixed-orbit) can again be based on the exis-
tence of the recirculating flow formed in between two
adjacent capsules in an array (Fig. 4). The explanation is
given using the fluid velocity vectors shown in Figs. 12 and
13 where two pairs of capsules are considered since the flow
is periodic in x. The capsules are marked by number 1, 2 etc.
Consider Re = 10 first in Fig. 12. At t* = 5 (Fig. 12a), a recir-
culating flow exists (marked by ‘R1’ in the figure) between
the capsules 1 and 2 where the fluid moves in the clockwise
direction. At this moment the centers of capsules 1 and 2
are located above and below y = 0, respectively. As the cap-
sules approach each other, the recirculating flow between
them weakens. At t* � 12 (Fig. 12c), the capsules are closest
to each other, and the recirculating flow between them is
absent. Instead, a straining flow region exists (marked by
‘S’ in Fig. 12c). The generation of this straining flow region
was also discussed in section III-B. At this point, however,
two recirculating regions, marked by ‘R2’ in Fig. 12c,
develop between capsules 3 and 1, and between 2 and 4.
As a result, capsule 1 now starts moving downward towards
y = 0, and capsule 2 moves upward towards y = 0. Due to
inertia, the capsules cross the y = 0 axis. Once the capsule
1 is in y < 0, and capsule 2 is in y > 0, they start receding
from each other (Fig. 12d). The intercapsule gap between
1 and 2 starts increasing and a recirculating flow re-emerges
there (marked by ‘R1’ in Fig. 12e), whereas straining flow
regions re-emerges between 3 and 1, and between 2 and 4.
The cycle is then repeated.

The vector plots for Re = 50 are shown in Fig. 13. As
noted earlier in Fig. 4 for single capsule, the off-surface
stagnation points are located closer to the capsule as Re

increases. As a result, the recirculating flow develops
between two capsules even when the inter-capsule gap is
relatively small. The effect from two adjacent recirculating
regions is nullified by each other, and eventually the cap-
sules attain a stable position at y = 0 axis.
3.6. Regimes of capsule–capsule interaction at finite Re

Above results suggest that increased lateral displace-
ment upon binary interaction, which is characteristic of
Re� 1, may or may not be present at finite Re (or, We)
depending on the impact parameter Dy0/a and the initial
gap Dx0/a. In the case where such interaction is present,
the lateral separation between the capsules first decreases
before they roll over each other. In the case when such
interaction is absent, the capsule-pair engages in a spiraling
motion. The spiraling motion could be either outward,
inward or fixed-orbit. These regimes of motion are shown
in a Re–Dy0 (or, We–Dy0) plane in Fig. 14 for a fixed
Dxo/a = 4. Based on the computational results, four differ-
ent regimes in capsule–capsule interaction at finite Re can
be identified. They are: (i) a self-diffusive type interaction
for Re < 3 (We < 1) and any Dy0 in which the capsules roll
over each other as in case of Re� 1, (ii) an outwardly spi-
raling motion for 3 < Re < 20 (1 < We < 4) and for low val-
ues of Dy0/a (<0.4), (iii) a fixed-orbit spiraling motion for
20 < Re < 30 (4 < We < 6) and Dy0/a < 0.4, and (iv) an
inwardly spiraling motion for Re > 30 (We > 6) and Dy0/
a < 0.4 in which the capsules settle at y = 0.
4. Summary and conclusion

Three-dimensional numerical simulations using front-
tracking method are performed to study the dynamics of
deformable liquid capsules in simple shear flow. Capsules
are modeled as liquid drops surrounded by neo-Hookean
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elastic membranes. Comparison of the results on large
deformation of capsules obtained using the present meth-
odology and previous boundary integral simulations
showed excellent agreement. The main objective of this
article was to study the effect of inertia on the hydrody-
namic interaction between a pair of capsules. In the limit
of zero inertia, it has been known from past research that
the hydrodynamic interaction between two deformable
particles (drops/capsules) suspended in shear flow with a
relative velocity results in an irreversible shift in the trajec-
tories of the particles leading to the so-called shear-induced
diffusion, in case of a suspension of many particles. In this
article we investigated the effect of inertia on the deforma-
tion of single capsule, and on capsule–capsule interaction.
Throughout the article, we draw comparison between the
results at finite inertia and at small inertia. The main results
from this study are summarized below.

1. At finite inertia, a capsule in a shear flow deforms in to
an ellipsoidal shape, and deformation increases with
increasing Re. The flow field around a capsule showed
reverse flow regions and off-surface stagnation points,
similar to those previously reported in case of torque-
free spheres and cylinders. The lateral extent of the
reverse flow increases with increasing Re.

2. The present methodology has been successful to simu-
late the irreversible trajectory shift resulting from the
hydrodynamic interaction between two liquid capsules
at Re� 1. Similar to liquid drops, capsules at Re� 1
undergo irreversible increase in their lateral separation
implying the possibility of the shear-induced diffusion
mechanism in case of a capsule suspension. During the
interaction, the capsules undergo significant deforma-
tion. To the best of our knowledge, apart from the pres-
ent study, there is only one study that addressed the
binary interaction of liquid capsules (Lac et al., 2007).

3. Effect of inertia on the interaction between two capsules
is quite remarkable. For 1 < Re < 3, the capsules do
undergo increased lateral displacement, but their trajec-
tories are different from those at Re� 1. Specifically,
the lateral separation between the capsules first
decreases before they roll over each other. For Re > 3,
the capsules reverse their directions of motion before
coming close to each other. Thus, for Re > 3, the
shear-induced diffusion can be absent. The reversal of
the capsule motion is explained based on the recirculat-
ing streamlines formed around the capsule at finite Re.
The reversal of motion occurs progressively earlier in
time (that is, the capsules come less closer to each other)
with increasing Re.

4. The long-time behavior of the capsule–capsule interac-
tion at finite inertia showed that the capsules engage in
spiraling motions. The nature of the spiraling motion
depends on Re and We, and the initial separation
between the capsules. The spiraling motion of the cap-
sules is also explained based on the recirculating stream-
lines formed around the capsule at finite Re.
5. Based on our simulations, four different regimes of cap-
sule–capsule interaction at finite inertia are identified: (i)
a self-diffusive type interaction for Re < 3 (We < 1), (ii)
an outwardly spiraling motion for 3 < Re < 20 (1 <
We < 4), (iii) a fixed-orbit spiraling motion for 20 <
Re < 30 (4 < We < 6), and (iv) an inwardly spiraling
motion for Re > 30 (We > 6) in which the capsules settle
with zero relative velocity. These spiraling motions at
finite Re have no analogy at Re� 1.

One distinct feature of capsule–capsule interaction at
finite inertia is that the capsules do not come close enough
so that the interaction does not lead to further deformation
of them. This is in stark contrast to Re� 1 limit when the
capsules undergo significant deformation during the inter-
action. These, and other results presented here may have
implications in developing a theory of capsule suspension.
By considering the binary interaction of capsules, this
study forms the basis of addressing the more difficult prob-
lem of suspension of deformable capsules or other deform-
able particles at finite inertia.

It should be noted that the results presented here are in a
domain bounded in the velocity gradient direction, and
periodic in other two directions. While different trajectories
are obtained depending on the particle Reynolds number,
the effect of the bounding wall certainly plays a role. In
order to assess the wall effect, one needs to consider either
open boundaries in the velocity gradient direction, or at
least, consider a large channel height to particle size ratio.
In this article we have not pursued this. A recent work by
Zurita-Gotor et al. (2007) indeed showed that swapping
trajectories are possible even in the limit of Stokes flow
when a bounded domain is considered. It appears that
the interplay of wall effects and inertia presents rich physics
and an interesting area of further research.

Further, for the highest capsule Re considered here, and
given the channel width to capsule size ratio, the Reynolds
number based on the channel width (ReH = GH2/m) is 1953.
A plane Couette flow is linearly stable for all ReH, whereas
it becomes unstable to spanwise disturbance in the range
600–800 (see, e.g. Barkley and Tuckerman, 1999). In our
code, we do not observe such instability unless we enforce
3D disturbance.

In closing, we emphasize that the results presented here
are for capsule pairs moving in the shear plane. For a gen-
eral understanding of a suspension, off-plane interactions
would also be important which are left for future
investigation.

Computations are performed on the IBM p690 at the
National Center for Supercomputing Applications at Uni-
versity of Illinois at Urbana-Champaign.
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